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We consider the Langevin equation with a multiplicative noise term that depends on time and space. The
corresponding Fokker-Planck equation in the Stratonovich approach is investigated. Its exact solution is ob-
tained for an arbitrary multiplicative noise term given by g�x , t�=D�x�T�t�, and the behaviors of probability
distributions, for some specific functions of D�x�, are analyzed. We show that the asymptotic shape of the
random-walk model and power-law decay obtained from other approaches can be reproduced from our solu-
tions, by employing two simple functions for g�x , t�. In particular, for D�x���x�−�/2, the physical solutions for
the probability distribution in the Ito, Stratonovich, and postpoint discretization approaches can be obtained
and analyzed.
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In the last several decades, anomalous diffusion properties
have been extensively investigated by several approaches in
order to model different kinds of probability distributions
such as long-range spatial or temporal correlations �1�. For
instance, the well-known cases are the Langevin and the cor-
responding Fokker-Planck equations, and the master equa-
tion. The other ones we could mention are the generalized
Langevin equations �2�, the generalized Fokker-Planck equa-
tion with memory effect �3�, generalized thermostatistics �4�,
generalized master equations �5�, continuous time random
walk �6�, and fractional equations �1�. These approaches
have been used to describe numerous systems in several con-
texts such as physics, hydrology, chemistry, and biology.

The well-established property of the normal diffusion de-
scribed by the Gaussian distribution can be obtained by the
usual Fokker-Planck equation with a constant diffusion coef-
ficient �without the drift term�. Anomalous diffusion regimes
can also be obtained by the usual Fokker-Planck equation;
however, they arise from a variable diffusion coefficient that
depends on time and/or space. On the other hand, in the view
of Langevin approach, it is associated with a multiplicative
noise term. In other approaches such as the generalized
Fokker-Planck equation �nonlinear� and fractional equations,
they can describe anomalous diffusion regimes with a con-
stant diffusion coefficient.

In this paper, we investigate the Fokker-Planck equation
with a variable diffusion coefficient in time and space, in the
Stratonovich approach. We show that for a multiplicative
noise term separable in time and space, g�x , t�=D�x�T�t�, we
can obtain a formal solution for the probability distribution.
We also analyze the behaviors of probability distributions for
some specific functions of D�x�, which can manifest interest-
ing properties such as non-Gaussian distribution, combina-
tion of behaviors such as Gaussian �for small distances� and
exponential �for large distances�, and combination of behav-
iors such as Gaussian �for small distances� and power-law
decay for long distances. Also, we can obtain many bimodal
distributions for different forms of D�x�.

Now, we consider the following Langevin equation:

�̇ = g��,t���t� , �1�

where � is a stochastic variable and ��t� is the Langevin
force. We assume that the averages ���t��=0 and ���t���t̄��
=2��t− t̄� �3�. For g=	D, Eq. �1� describes the Wiener pro-
cess, and the corresponding probability distribution is de-
scribed by a Gaussian function. In the case of the g�� , t�
variable, some specific functions have been employed to
study, for instance, turbulent flows �g�x , t���x�atb� �7,8�. By
applying the Stratonovich approach in a one-dimensional
space �3�, we obtain the following dynamical equation for
the probability distribution:

�W�x,t�
�t

=
�

�x

g�x,t�

��g�x,t�W�x,t��
�x

� . �2�

Hereafter we consider that the multiplicative noise term
g�x , t� is separable in time and space, g�x , t�=D�x�T�t�. Then,
we can rewrite Eq. �2� in the following manner:

��

� t̄
=

�2�

� x̄2 , �3�

with

��x,t� = D�x�W�x,t� , �4�

dt̄

dt
= T2�t� , �5�

and

dx̄

dx
=

1

D�x�
. �6�

Equation �3� has the following formal solution,

��x̄, t̄� = A

exp
−
x̄2

4t̄
�

	t̄
, �7�

where A is a normalization factor. We note that for D�x�
=	D and T�t�=1 we recover the Wiener process.
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We can now explore some spatial features of the probabil-
ity distribution of solution �4�, for some specific forms of
D�x�.

First case. We consider

x̄ =
x

	D�1 + a�x�c�b
, �8�

where a is a positive real number. From Eqs. �4�, �6�, and �7�
we obtain

W�x,t� = C1

�1 + a�1 − bc��x�c�exp
−
x2

4Dt̄�1 + a�x�c�2b�
	t̄�1 + a�x�c�1+b

,

�9�

where bc�1 in order to maintain W�x , t� positive. For a=0
or b=0 we recover the Wiener process.

In particular, for c=1/b, we have

W�x,t� = C2

exp
−
x2

4Dt̄�1 + a�x�1/b�2b�
	t̄�1 + a�x�1/b�1+b

. �10�

In this process, the behavior, for small a and x, is like a
Gaussian function, whereas for large distances, the exponen-
tial term converges to a constant value. Therefore, for large
distances, the dominant term is the multiplicative factor
1 / �1+a�x�1/b�1+b, which approximates to the asymptotic
power law �x�−�1+b�/b. We note that, for instance, the power-
lay decay is present in the fractional and nonlinear ap-
proaches �1,9�.

For b=1 and c=1/2 we obtain

W�x,t� = C3

�2 + a	�x��exp
−
x2

4Dt̄�1 + a	�x��2�
	t̄�1 + a	�x��2

. �11�

In this process, the behavior, for small a and x, is like a
Gaussian function. For large distances, we basically have an
exponential decay. We note that the exponential decay has
been observed in pair dispersion in two-dimensional turbu-
lence �10�.

Moreover, for bc�0, the decay of the solution �9� is es-
sentially a compressed Gaussian shape, whereas for bc	0,
the decay is essentially a stretched Gaussian shape. It is in-
teresting to emphasize that the solution �9� can have a similar
asymptotic non-Gaussian shape of the random-walk model

and time-fractional dynamic equation �1�. The asymptotic
shape of the random-walk model and time-fractional dy-
namic equation is given by

W�x,t� � C4t−
/2�−�1−
�/�2−
�exp�− C5�2/�2−
�� , �12�

where ���x� / t
/2. This shape can be obtained from the solu-
tion �9�, for large distances, by taking bc= �1−
� / �2−
�, t̄
= t
/�2−
� and T2�t�= �
 / �2−
��t2�
−1�/�2−
�.

Second case. We consider

D�x� = 	D�x�−�/2, �13�

where � is a real parameter. We should note that the diffusion
coefficient �13� has been used to describe the diffusive pro-
cess on a fractal �11�. The probability distribution �4� for the
spatial multiplicative noise term �13� is given by

W�x,t� =

�x��/2exp
−
�x�2+�

D�2 + ��2t̄
�

	4�Dt̄
. �14�

In this process, we have the bimodal states. In fact, we can
construct many bimodal states by choosing different func-
tions for D�x�. For �=0 we recover the Wiener process. Ba-
sically, for large distances, the probability distribution �14�
has a non-Gaussian decay. The second moment related to this
process is given by

�x2� =

�D2�2 + ��4�1/�2+���
 6 + �

2�2 + ��� t̄ 2/�2+��

	�
. �15�

The solution �14� also reproduces the asymptotic shape �12�
by taking 2+�=2/ �2−
�, t̄= t
/�2−
� and T2�t�= �
 / �2
−
��t2�
−1�/�2−
�. The second moment �15� yields �x2�� t
,
which corresponds to the same behavior of the time-
fractional diffusion equation �1�. For this process, the multi-
plicative noise term corresponds to g�x , t���x�atb, which has
the same form suggested by Hentschel and Procaccia to
study the turbulent system �8�. The asymptotic shapes above
are summarized in Table I.

We can now compare with the solution obtained by the Ito
approach for the same Langevin equation using �13�. The
solution has been obtained in �12�, and for T�t�=1 it is given
by

TABLE I. Asymptotic shapes of the solutions �9� and �14�.

Solution �9� Asymptotic shape Solution �14� Asymptotic shape

a=0 or b=0 Gaussian �=0 Gaussian

c=1/b Power law �	0 Compressed Gaussian

b=1, c=1/2 Exponential −2���0 Stretched Gaussian

bc�0 Compressed Gaussian

bc	0 Stretched Gaussian
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WI�x,t� �
�x��exp
−

�x�2+�

D�2 + ��2t
�

t�1+��/�2+�� . �16�

The second moment yields

�x2�I � t2/�2+��. �17�

We see that these two approaches give different behaviors for
the probability distribution due to the multiplicative factors.
However, the second moments of these two approaches give
the same behavior. Further, both the distributions present the
bimodal states. It is also interesting to compare them with an
other approach that uses the postpoint discretization rule
�12,13�. For this last case, the probability distribution does
not present the bimodal states; however, its second moment
has the same power-law behavior of the Ito and Stratonovich
approaches. We see that three different approaches give dif-
ferent behaviors, but they give the same power-law behavior
for the second moment.

In summary, we have investigated the usual one-
dimensional Fokker-Planck equation with a variable diffu-
sion coefficient in the Stratonovich approach. We have con-
sidered a very general class of the multiplicative noise term,
g�x , t�=D�x�T�t�, and we have presented the formal solution
for the probability distribution. Using the formal solution, we
have analyzed some particular solutions by choosing simple
functions for D�x�. We have shown interesting behaviors for
the probability distribution such as non-Gaussian, exponen-
tial, and power-law decays for large distances. As we note,

the usual Fokker-Planck equation can describe many differ-
ent anomalous processes with many different behaviors. The
introduction of a time-dependent multiplicative noise term
may be necessary for the cases of more complex systems
such as turbulent systems, as suggested by several authors
�7,8�. In fact, we have shown that the asymptotic shape of
the random-walk model and time-fractional dynamic equa-
tion can be obtained from the solutions described in this
paper with the time-dependent multiplicative noise term. The
power-law decay generated from other approaches can also
be reproduced from the solution �9�. These results show that
the asymptotic shapes of several other approaches can be
generated from a single and well-established Langevin equa-
tion, by employing simple functions for the multiplicative
noise term. However, it does not mean that our solutions can
be used to substitute the solutions of other approaches due to
the fact that their formulations are different, and this can also
be viewed from our solutions, which exhibit different dy-
namics for small x in comparison with the results of other
approaches. Further, we have also shown that the solutions of
the Ito, Stratonovich, and postpoint discretization ap-
proaches, for D�x�=	D�x�−�/2, describe different behaviors,
but their second moments describe the same behavior. If the
diffusion coefficient D�x�=	D�x�−�/2 may describe exactly a
real physical system by the Fokker-Planck equation, then
further information of the microscopic structure of the sys-
tem is necessary in order to choose which of the above ap-
proaches is the correct one or, simply, which of the above
approaches can fit the experimental data.
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